صفحه محصول - پاورپوینت نظریه اوربیتال مولکولی هوکل

پاورپوینت نظریه اوربیتال مولکولی هوکل (pptx) 24 اسلاید


دسته بندی : پاورپوینت

نوع فایل : PowerPoint (.pptx) ( قابل ویرایش و آماده پرینت )

تعداد اسلاید: 24 اسلاید

قسمتی از متن PowerPoint (.pptx) :

1-4-نظریه اوربیتال مولکولی هوکل در مولکول های مسطح مزدوج، سیستم pرا می توان مستقل از چارچوب s در نظر گرفت. (اسکلت s سیستم های مزدوج مسطح درصفحه گرهی سیستم p قرار دارد ودر نتیجه با هم برهم کنش ندارند.) سیستم پی در تعیین خواص شیمیایی و طیف نگاری پلی ان های مزدوج وترکیبات آروماتیک اهمیت ویژه دارد. در تقریب HMO تابع موج الکترون های p به صورت ترکیب خطی اوربیتال های p بیان میشود. ترازهای انرژی وضرایب اتمی از جمله اطلاعاتی هستند که از محاسبات بدست می آیند . Molecular orbitals for polyatomic systems The Hückel approximation Here, we investigate conjugated molecules in which there is an alternation of single and double bonds along a chain of carbon atoms. In the Hückel approach, the  orbitals are treated separately from the  orbitals, the latter form a rigid framework that determine the general shape of the molecule. All C are considered similar  only one type of coulomb integral  for the C2p atomic orbitals involved in the  molecular orbitals spread over the molecule. A. The secular determinant The  molecular orbitals are expressed as linear combinations of C2pz atomic orbitals (LCAO), which are perpendicular to the molecular plane.  Ethene, CH2=CH2: =cAA + cBB, where A and B are the C2pz orbitals of each carbon atoms.  Butadiene, CH2=CH-CH=CH2: =cAA + cBB+ccC + cDD The coefficients can be optimized by the same procedure described before: express the total energy E as a function of the ci and then minimize the E with respect to those coefficients ci. Inject the energy solutions in the secular equations and extract the coefficients minimizing E. (1)  Numerator:  Denominator: (1) (1) Energy in the LCAO approach  1 is a Coulomb integral: it is related to the energy of the e- when it occupies atome 1. ( < 0)  is a Resonance integral: it is zero if the orbital don’t overlap. (at Re, <0) is the overlap integral related to the overlap of the 2 AO Let’s find the “zeros” or roots of the polynomial vs. cA and cB We want the cA minimizing E, we then impose: We want the cB minimizing E, we then impose: Secular equations In order to have a solution, other than the simple solution cA= cB= 0, we must have: Secular determinant should be zero The 2 roots give the energies of the bonding and antibonding molecular orbitals formed from the AOs Homonuclear diatomic molecules: =cAA + cBB with A= B  A= B=  (1) (2) (2) (1) antibonding bonding antibonding= {2(1-S)}-1/2(A - B) bonding= {2(1+S)}-1/2(A + B) 0   0  Eantibonding= - E- Ebonding = E+- Since: 0 < S < 1  Eantibonding > Ebonding Note 1: He2 has 4 electrons  ground-state configuration: 12 2*2  He2 is not stable! Note 2: If we neglect the overlap integral (S=0), Eantibonding = Ebonding =   The resonance integral  is an indicator of the strength of covalent bonds Following these methods and since A= B= , we obtain those secular determinants:  Ethene, CH2=CH2:  Butadiene, CH2=CH-CH=CH2: Hückel approximation: 1) All overlap integrals Sij= 0 (i j). 2) All resonance integrals between non-neighbors, i,i+n=0 with n 2 3) All resonance integrals between neighbors are equal, i,i+1= i+1,i+2 =  Severe approximation, but it allows us to calculate the general picture of the molecular orbital energy levels. B. Ethene and frontier orbitals Within the Hückel approximation, the secular determinant becomes: E- =  -  energy of the Lowest Unoccupied Molecular Orbital (LUMO) E+ =  +  energy of the Highest Occupied Molecular Orbital (HOMO) LUMO= 2* HOMO= 1  HOMO and LUMO are the frontier orbitals of a molecule.  those are important orbitals because they are largely responsible for many chemical and optical properties of the molecule. Note: The energy needed to excite electronically the molecule, from the ground state 12 to the first excited state 11 2*1 is provided roughly by 2|| ( is often around -0.8 eV)  Chap 17 2|| Butadiene and delocalization energy  4th order polynomial  4 roots E = E4 = E3 = E2 = E1 There is 1e- in each 2pz orbital of the four carbon atoms  4 electrons to accommodate in the 4 -type molecular orbitals  the ground state configuration is 12 22  The greater the number of internuclear nodes, the higher the energy of the orbital  Butadiene C4H6: total -electron binding energy, E is E = 2E1+2E2= 4 + 4.48 with two -bonds  Ethene C2H4:E = 2 + 2 with one -bond  Two ethene molecules give: E = 4 + 4 for two separated -bonds.  The energy of the butadiene molecule with two -bonds lies lower by 0.48 (-36kJ/mol) than the sum of two individual -bonds: this extra-stabilization of a conjugated system is called the “delocalization energy” 3 nodes 2 nodes 1 node 0 node LUMO= 3* HOMO= 1 Top view of the MOs

فایل های دیگر این دسته

مجوزها،گواهینامه ها و بانکهای همکار

دانلود پروژه دارای نماد اعتماد الکترونیک از وزارت صنعت و همچنین دارای قرارداد پرداختهای اینترنتی با شرکتهای بزرگ به پرداخت ملت و زرین پال و آقای پرداخت میباشد که در زیـر میـتوانید مجـوزها را مشاهده کنید